Euler’s Pentagonal Number Theorem and the Rogers-fine Identity
نویسنده
چکیده
Euler discovered the pentagonal number theorem in 1740 but was not able to prove it until 1750. He sent the proof to Goldbach and published it in a paper that finally appeared in 1760. Moreover, Euler formulated another proof of the pentagonal number in his notebooks theorem around 1750. Euler did not publish this proof or communicate it to his correspondents, probably because of the difficulty of clearly presenting it with the notation at the time. In this paper we show that the method of Euler’s unpublished proof can be used to give a new proof of the celebrated Rogers-Fine identity.
منابع مشابه
Further Multivariate Generalizations of Euler’s Pentagonal Number Theorem and the Rogers-ramanujan Identities
We use the idea of index invariance under the Franklin mapping to prove higher power generalizations of two results discovered by M. V. Subbarao. We then apply similar ideas to a two-variable generalization of the Rogers-Ramanujan identities due to G. E. Andrews.
متن کاملq-HYPERGEOMETRIC PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE’S IDENTITY AND EULER’S PENTAGONAL NUMBER THEOREM
X iv :m at h/ 02 03 22 9v 1 [ m at h. C O ] 2 2 M ar 2 00 2 2000]Primary 05A19, 33D15 q-HYPERGEOMETRIC PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE’S IDENTITY AND EULER’S PENTAGONAL NUMBER THEOREM S. OLE WARNAAR Abstract. We present alternative, q-hypergeometric proofs of some polynomial analogues of classical q-series identities recently discovered by Alladi and Berk...
متن کاملAN ELLIPTIC BCn BAILEY LEMMA, MULTIPLE ROGERS–RAMANUJAN IDENTITIES AND EULER’S PENTAGONAL NUMBER THEOREMS
An elliptic BCn generalization of the classical two parameter Bailey Lemma is proved, and a basic one parameter BCn Bailey Lemma is obtained as a limiting case. Several summation and transformation formulas associated with the root system BCn are proved as applications, including a 6φ5 summation formula, a generalized Watson transformation and an unspecialized Rogers–Selberg identity. The last ...
متن کاملFranklin's Argument Proves an Identity of Zagier
Recently Zagier proved a remarkable q-series identity. We show that this identity can also be proved by modifying Franklin’s classical proof of Euler’s pentagonal number theorem. Mathematics Subject Classification (2000): 05A17 11P81
متن کاملBijections and Congruences for Generalizations of Partition Identities of Euler and Guy
In 1958, Richard Guy proved that the number of partitions of n into odd parts greater than one equals the number of partitions of n into distinct parts with no powers of 2 allowed, which is closely related to Euler’s famous theorem that the number of partitions of n into odd parts equals the number of partitions of n into distinct parts. We consider extensions of Guy’s result, which naturally l...
متن کامل